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The frequency detuning correction and the asymmetry of line shapes:
The far wings of H 2O– H2O
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A far-wing line shape theory that satisfies the detailed balance principle is applied to the H2O– H2O
system. Within this formalism, two line shapes are introduced, corresponding to band averages over
the positive and negative resonance lines, respectively. Using the coordinate representation, the two
line shapes can be obtained by evaluating 11-dimensional integrations whose integrands are a
product of two factors. One depends on the interaction between the two molecules and is easy to
evaluate. The other contains the density matrix of the system and is expressed as a product of two
three-dimensional distributions associated with the density matrices of the absorber and the
perturber molecule, respectively. If most of the populated states are included in the averaging
process, to obtain these distributions requires extensive computer CPU time, but only have to be
computed once for a given temperature. The 11-dimensional integrations are evaluated using the
Monte Carlo method, and in order to reduce the variance, the integration variables are chosen such
that the sensitivity of the integrands on them is clearly distinguished. Numerical tests show that by
taking into account about 107 random selections, one is able to obtained converged results. We find
that it is necessary to consider frequency detuning, because this makes significant and opposite
contributions in the two band-averaging processes and causes the lines to be asymmetric. Otherwise,
the two line shapes become symmetric, are the same, and equal to the mean of the two shapes
obtained including the frequency detuning effects. For the pure rotational band, we find that the
magnitude of the line shape obtained from the positive line average is larger than that obtained from
the negative line average forv.0 and vice versa forv,0, and their relative gap increases as the
frequency displacement from the line center increases. By adopting a realistic potential model and
optimizing its parameters, one is able to obtain these two line shapes and calculate the
corresponding absorption coefficients that are in good agreement with laboratory data. Also, this
same potential yields good theoretical values for other physical properties of the dilute H2O gas.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1436115#
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I. INTRODUCTION

In previous papers, we have presented the theory for
calculation of far-wing line shapes and the correspond
absorption coefficients for interacting pairs of molecules.1–3

Assuming only the binary collision and quasistatic appro
mations, we have shown that by using the coordinate re
sentation to describe the orientation of each molecule be
and after the transition, we are able to reduce the problem
the calculation of multidimensional integrals. The dime
sionality of the integrals depends on the type of molecu
involved; specifically for two linear molecules~e.g.,
CO2– CO2 or CO2– N2! the dimensionality is 7, while for
one asymmetric top and a linear partner~e.g., H2O– N2! it is
9. For the first case we were able to obtain converged res
with a sophisticated interaction potential using conventio
integration methods.1 However, for the latter case, we had

a!Electronic mail: gma@giss.nasa.gov
4100021-9606/2002/116(10)/4102/14/$19.00
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use the Monte Carlo method.3 This system is important in
atmospheric applications where we have shown that the
sorption ~known as the ‘‘foreign continuum’’! is in good
agreement with experimental results.3 Because the absorp
tion by H2O– H2O pairs~the ‘‘self-continuum’’! is more im-
portant, we would like to extend our theory to the case
two interacting asymmetric tops; the dimensionality in th
case is 11, thus implying a big challenge to obtain conver
results. In a previous paper, we have shown that by con
ering an interaction potential containing cyclic coordinat
the dimensionality is reduced to 7, and one can obtain c
verged results.2

One of our goal in the present paper is to remove t
restriction and calculate the far-wing line shape f
H2O– H2O using the most general interaction potential.
accomplish this goal, it is necessary to modify the Mon
Carlo routine used previously such that the sensitivity of
integrand on the integration variables is clearly charac
ized. A second goal is to investigate the asymmetry of l
2 © 2002 American Institute of Physics

AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ve
en
th
li

pe

te
fo
an

m
te
ta
n

nt
ffe
c

nt
as
c
e
o

c
n
e

th
th
tw
os
th

bu
os
ob
w

io
p
e
ve
d
e
e
t

he
pe
u
al
a

w
fro

la
i

e
is

ap
bl

the

e

nd

l-
al
We

c-

e
, for
low,
nd
rber
ce

n
ym-

f

-
m
ab-

4103J. Chem. Phys., Vol. 116, No. 10, 8 March 2002 The far wings of H2O–H2O
shapes; in order to do this, one has to carry out band a
ages in a more sophisticated way and consider the frequ
detuning effect in the line shape calculations. Based on
present work, one can conclude that the band-average
shapes are asymmetric and, in addition, one would ex
different line shapes for different bands.

In order to reduce any unphysical effects in calcula
results, we carry out all numerical calculations based on
mulas that satisfy the detailed balance principle exactly
have a higher accuracy in the short-time limit.4 As expected,
this increases the difficulty because the formulas beco
more complicated. Thanks to great advances in compu
made in recent years, we are able to overcome this obs
successfully. Finally, we utilize a realistic interaction pote
tial applicable for the dilute H2O gas that not only gives
good agreement between theory and experime
temperature-dependent second virial coefficients and di
ential scattering cross sections, but also yield absorption
efficients that are in good agreement with the experime
self-continuum data. We note that because the theory h
sound physical basis, we expect that theoretical results
culated at a lower temperature, which would be extrem
difficult to obtain experimentally because of the lower vap
pressure attainable, are valid.

The paper is organized in the following way. In Se
II A, we present the expressions for the correlation functio
and the spectral densities that satisfy detailed balance
actly. In Sec. II B, we introduce two band averages and
corresponding line shape functions. The application of
coordinate representation for the system consisting of
asymmetric tops is presented in Sec. II C. Our main purp
is to introduce the density matrices of the absorber and
perturber molecule, which are three-dimensional distri
tions, and to show how to calculate them. This is the m
costly calculation in the present study and the results
tained are used to get the line shapes later. In Sec. II D,
discuss how to calculate the frequency detuning correct
The method is similar to that used to calculate the line sha
without this correction, except one has to developed a n
technique to deal with the integrand containing a derivati
The necessary generalization of the Monte Carlo metho
11-dimensional integrations is discussed in Sec. II E. In S
II F, we discuss a realistic interaction potential that giv
good agreement with various molecular data measured in
dilute gas phase, including the absorption coefficient. T
in Sec. II G, we apply the theory to obtain two line sha
functions numerically for several temperatures and disc
some of their general features. We use these results to c
late the corresponding absorption coefficients and comp
those obtained in the 300–1100 cm21 spectral region for the
room temperature with experimental results. In Sec. III,
discuss the results obtained and the conclusions drawn
the present study.

The present work, together with the previous calcu
tions for simpler systems, constitute a general formalism
which one can obtain from first principles the far-wing lin
shapes for any colliding pair for which a realistic potential
available. Conversely, if experimental data for the line sh
or the corresponding absorption coefficients are availa
Downloaded 26 Feb 2002 to 130.160.100.133. Redistribution subject to 
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one can use this formalism in order to test the accuracy of
potentials.

II. THE GENERAL FORMALISM

A. Symmetric correlation function and spectral
density that satisfy the detailed balance principle

The absorption coefficienta~v! of a gaseous sampl
with a unit volume is given by

a~v!5
4p2

3\c
nav tanh~b\v/2!@F~v!1F~2v!#, ~1!

wherena is the number density of absorber molecules a
the spectral density,F(v), is the Fourier transform of the
correlation functionC(t). One separates the total Hami
tonian H into two parts: one commutes with the intern
coordinates of the molecules while the second does not.
note that this distinction ofH usually coincides with the
division of the interaction into two parts:Viso andVani, the
isotropic and the anisotropic interactions, respectively. A
cordingly, the total HamiltonianH is decomposed as

H5Ha1Hb1Viso1Vani[H01Vani, ~2!

whereHa and Hb are the unperturbed Hamiltonians of th
absorber and the bath molecules, respectively. In practice
atmospheric applications where the gas pressures are
one can introduce the binary collision approximation a
focus on a much simpler system consisting of one abso
and one bath molecule. For simplicity, we do not introdu
new symbols for the two-molecule system.

It has been shown that one is able to expressC(t) in the
t→0 limit, which is valid to ordert2, as4

C~ t !5nbn Tr$~eiL at/2Arbram!†r isoe
2bVani

3@e2 iL anit~e2 iL at/2Arbram!#%, ~3!

where nb is the number density of the bath molecules,n
5Tr@e2bH0#/Tr@e2bH#, and the Liouville operatorsLa and
Lani corresponding toHa and Vani, respectively, have bee
introduced. For later convenience, we can introduce a s
metric correlation functionC̃(t)@[C(t1 i\b/2)#, defined
by

C̃~ t !5nbn Tr$~eiL at/2Arbra
1/4mra

1/4!†r isoe
2bVani/2

3@e2 iL anit~e2 iL at/2Arbra
1/4mra

1/4!#e2bVani/2%. ~4!

From these expressions, it is easy to verify thatC(2t)
5C(t1 i\b) and C̃(2t)5C̃(t), which guarantees both o
them satisfy the detailed balance principle.4,5

By expressingC̃(t) explicitly as summations over indi
ces i, j, i 8, and j 8, where each represents all the quantu
numbers necessary to specify the energy levels of the
sorber molecule, one is able to writeC̃(t) as
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C̃~ t !5(
i j

(
i 8 j 8

ei ~v j i 1v j 8 i 8!t/2nbn Trb$^ j ura
1/4m†ra

1/4Arbu i &

3^ i ur isoe
2bVani/2e2 iVanitu i 8&^ i 8uArbra

1/4mra
1/4u j 8&

3^ j 8ueiVanite2bVani/2u j &%. ~5!

In the above expression,v j i 5Ej2Ei , and the the subscrip
b of trace denotes the trace over the remaining variab
including all magnetic quantum numbers. We assume tha
interaction between two molecules does not depend on t
vibrational quantum numbers. As a result, in Eq.~5! the vi-
brational quantum numbers ofi andi 8 are identical and those
of j and j 8 are also identical, but the former could differ fro
the latter. By choosing theZ axis of the space-fixed fram
along the separation between the two molecules, the inte
tion Vani(r ,Va ,Vb) depends on the orientations of the tw
molecules represented byVa andVb , respectively, and onr,
the distance between the centers of mass, which can be
sidered as a parameter since the translational motio
treated classically. In Hilbert space associated with the in
nal degrees, one denotes the eigenvalues and eigenvect
Vani(r ,Va ,Vb) by Gz and uz&, respectively; thus

Vani~r ,Va ,Vb!uz&5Gz~r !uz&. ~6!

Then, by performing the Fourier transform of the correlati
function C̃(t) and carrying out an integration overr ~i.e., the
classical ensemble average overr, which is valid within the
quasistatic approximation!, one is able to obtain the symme
ric spectral densityF̃(v),

F̃~v!5
1

p (
i j

(
i 8 j 8

x̃ i j ; i 8 j 8Fv2
1

2
~v j i 1v j 8 i 8!G . ~7!

The explicit expression forx̃ i j ; i 8 j 8(v) is given by

x̃ i j ; i 8 j 8~v!5(
zh

H̃zh~v!(
$m%

(
i b

(
i b8

^hu j i b&

3^ j i bura
1/4m†ra

1/4Arbu i i b&^ i i buz&^zu i 8i b8&

3^ i 8i b8uArbra
1/4mra

1/4u j 8i b8&^ j 8i b8uh&, ~8!

wherei b and i b8 are indices used to specify the states of
bath molecule and$m% indicates the summation over all ma
netic quantum numbers. In the above expression,H̃zh(v) is
defined by

H̃zh~v!5nbn4p2r c
2U 1

Gzh8 ~r c!
Ue2bViso~r c!2b@Gz~r c!1Gh~r c!#/2,

~9!

where Gzh8 (r ) denotes (d/dr)@Gz(r )2Gh(r )#, and r c are
roots of the equation

Gz~r c!2Gh~r c!5v. ~10!

We note that in Eq.~7!, the summation indicesi, j, i 8,
and j 8 exclude their magnetic quantum numbers since
summation over them has been carried out. The functi
x̃ i j ; i 8 j 8(v) introduced above are symmetric for the exchan
of indices $ i j %↔$ i 8 j 8%. Meanwhile, with respect the ex
Downloaded 26 Feb 2002 to 130.160.100.133. Redistribution subject to 
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changes$ i j %→$ j i % and $ i 8 j 8%→$ j 8i 8%, it is easy to verify
that x̃ j i ; j 8 i 8(2v)5x̃ i j ; i 8 j 8(v).4 In terms of F̃(v), the ab-
sorption coefficienta~v! becomes

a~v!5
8p2

3\c
nav sinh~b\v/2!F̃~v!. ~11!

Finally, it is worth mentioning thatF̃(v)5e2b\v/2F(v) and
F̃(2v)5F̃(v). The latter is required by the detailed ba
ance principle.

B. The averaged line shapes with the frequency
detuning correction

We consider a band consisting of transitions betwe
states with two vibrational quantum numbers specified.
simplicity, we designate a pair ofi and j ~i.e., a line! by the
symbolk. If necessary, we use symbolsk1 andk2 to distin-
guish a positive resonance line withEj2Ei.0 and a nega-
tive resonance one withEj2Ei,0. Then Eq.~7! can be
expressed as

F̃~v!5
1

p S (
k1

(
n

x̃k1 ;nFv2
1

2
~vk1

1vn!G
1(

k2

(
n

x̃k2 ;nFv1
1

2
~vk1

2vn!G D , ~12!

wherevk1
([uv j i u) is positive. We note that in Eq.~12! we

have not explicitly characterized the symboln by 1 or 2
yet. For the pure rotational band resulting from transitio
without changing the vibrational quantum number, both
symbolsn in two terms of Eq.~12! could ben1 and n2

because there is no link between the choices ofk and n.
Meanwhile, for a vibrational band,k1 or k2 is always asso-
ciated withn1 or n2 , respectively. In this case,i andi 8, and
also j and j 8, share the common vibrational quantum num
bers and, in general, these two different vibrational quant
numbers determine whetherk ~i.e., a pair ofi and j! and n
~i.e., a pair ofi 8 and j 8! belong to the positive or the nega
tive resonance. Therefore, for the vibrational bands the s
bol n in the first term of Eq.~12! should be understood asn1

and in the second term asn2 . This custom is applicable fo
the equations following.

On the other hand, by introducing two common lin
shape functionsx̃1(v) and x̃2(v) one assume thatF̃(v)
can be expressed as

F̃~v!5
1

p F(
k1

rkumku2S 1

~v2vk1
!2 x̃1~v2vk1

!

1
1

~v1vk1
!2 x̃2~v1vk1

! D G , ~13!

wheremk ([mi j % is the reduced dipole matrix element an
rk[Ar ir j . In order to find expressions forx̃1(v) and
x̃2(v), one performs the Fourier transform for Eqs.~12! and
~13! and compares the results to their time–domain versio
As a result, the following equation has to be satisfied:
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
k1

(
n

x̃k1 ;n~ t !ei ~vk1
1vn!t/2

1(
k2

(
n

x̃k2 ;n~ t !e2 i ~vk1
2vn!t/2

5F F 1

v2 x̃1~v!G(
k1

rkumku2eivk1
t

1F S 1

v2 x̃2~v! D(
k2

rkumku2e2 ivk1
t, ~14!

where for simplifying the notations we use th
symbols x̃k1 ;n(t), x̃k2 ;n(t), F@(1/v2)x̃1(v)#, and
F@(1/v2)x̃2(v)# to represent the Fourier transforms
x̃k1 ;n(v), x̃k2 ;n(v), (1/v2)x̃1(v), and (1/v2)x̃2(v), re-
spectively. Furthermore, one assumes that one can sep
Eq. ~14! into two equations: one associated with a summ
tion over the positive resonance lines and the other over
negative resonance lines,

F S 1

v2 x̃1~v! D5(
k1

(
n

x̃k1 ;n~ t !ei ~vk1
1vn!t/2Y

(
s1

rsumsu2eivs1
t, ~15!

and

F S 1

v2 x̃2~v! D5(
k2

(
n

x̃k2 ;n~ t !e2 i ~vk1
2vn!t/2Y

(
s1

rsumsu2e2 ivs1
t. ~16!

Then, with Eq.~15! it is easy to obtain an expression fo
F @(1/v2)x̃1(v)# that is valid in the short-time limit:

F S 1

v2 x̃1~v! D
.

1

N (
k1

(
n

x̃k1 ;n~ t !ei @~vk1
1vn!/22v̄#t, ~17!

whereN is the normalization factor defined by

N5(
k1

rkumku2, ~18!

andv̄ is the average positive resonance frequency define

v̄5
1

N (
k1

rkumku2vk1
. ~19!

By performing the inverse Fourier transformation, one
able to derive the expression forx̃1(v) valid at uvu→`,

x̃1~v!5v2
1

N (
k1

(
n

x̃k1 ;nFv2
1

2
~vk1

1vn!1v̄G .
~20!

Similarly, one can derive
Downloaded 26 Feb 2002 to 130.160.100.133. Redistribution subject to 
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x̃2~v!5v2
1

N (
k2

(
n

x̃k2 ;nFv1
1

2
~vk1

2vn!2v̄ G .
~21!

In Eqs.~20! and~21! the arguments of functions depen
on the summation indices and this results in difficulty obta
ing x̃1(v) and x̃2(v) directly. In practice, one prefers t
derive an expressions forx̃1(v) and x̃2(v) in which the
summations are performed over functions whose argum
are independent of the summation indices. For this purp
the frequency detuning approximation must be introduc
As an example, we consider Eq.~20!. With the Taylor series
expansion ofx̃k1 ;n@v2 1

2(vk1
1vn)1v̄# over v, one can

approximatex̃1(v) as

x̃1~v!5x̂1~v!

1v2
1

N(
k1

(
n

F v̄2
1

2
~vk1

1vn!G x̃k1 ;n8 ~v!,

~22!

where

x̂1~v![v2
1

N (
k1

(
n

x̃k1 ;n~v!, ~23!

and x̃k1 ;n8 (v)[dx̃k1 ;n(v)/dv. On the right side of Eq.

~22!, the first termx̂1(v) comes from simply ignoring the
frequency detuning and the second term is a correction.
note that in our previous study,6 a shift parameter was intro
duced to treat the effects from the frequency detuning. Ho
ever, it is better to calculate the contributions from the s
ond term directly because it turns out that, except for so
simple cases, the previous method could introduce nume
errors. Similarly, one can approximatex̃2(v) as

x̃2~v!5x̂2~v!

1v2
1

N(
k2

(
n

F2v̄1
1

2
~vk1

2vn!G x̃k2 ;n8 ~v!,

~24!

where

x̂2~v![v2
1

N (
k2

(
n

x̃k2 ;n~v!. ~25!

Using the symmetries x̃k2 ;n2
(2v)5x̃k1 ;n1

(v) and
x̃k2 ;n1

(2v)5x̃k1 ;n2
(v) ~the latter is appropriate for the

pure rotational bands only! mentioned above, one can sho
that

x̂2~2v!5x̂1~v!, ~26!

and

x̃2~2v!5x̃1~v!. ~27!

If one does not distinguish the two shapesx̃1(v) and
x̃2(v) in the expression forF̃(v) given by Eq.~13! and
replaces them by only one shapex̃(v), one can pursue a
similar derivation forx̃(v) and obtain
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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x̃~v!5v2(
k

(
n

x̃k;nFv2
1

2
~vk1vn!G Y (

k
rkumku2.

~28!

A simple versionx̂(v), defined by

x̂~v!5v2(
k

(
n

x̃k;n~v!Y (
k

rkumku2, ~29!

can also be introduced. In this case, bothx̃(v) and x̂(v)
become symmetric and, in addition, up to the first-order
proximation,x̃(v) is the same asx̂(v) because there is n
net contribution tox̃(v) from the first derivative term of the
Taylor series expansion ofx̃k;n@v2 1

2(vk1vn)#.
In summary, we note that within this formalism no ma

ter which functions are chosen for the line shape, in term
them the symmetric spectral densityF̃(v) always satisfies
the detailed balance principle. The formalism outlined abo
was developed several years ago.6 However, at that time,
except for the simplest systems, such as CO2– Ar, to calcu-
late converged line shapes for systems of interest in at
spheric applications was formidable. The main obstacle
the calculation involving a diagonalization procedure of t
anisotropic potential that exhausts computer resources
quickly.

C. The coordinate representation

Recently, we have developed a formalism based on
coordinate representation in which the eigenfunctions of
orientations of the system are chosen as the complete s
Hilbert space.1–3 The advantage of introducing this represe
tation is that the diagonalization of the potential becom
unnecessary and the main computational task is transfor
to the carrying out of multidimensional integrations. For sy
tems consisting of two linear molecules, or one linear a
one asymmetric top molecule, or two asymmetric top m
ecules, the dimensionality is 7, 9, and 11, respectively.
addition, we have shown that using the Monte Carlo meth
one is able to evaluate up to the nine-dimensional integ
tions required for systems such as H2O– N2.3 Combined
with techniques developed recently to handle sophistica
potential models,2 one is able to implement realistic pote
tials for these systems and derive accurate, converged re
for the far-wing line shapes and the corresponding absorp
coefficients.

In the present study, we are interested in a system c
sisting of two H2O molecules. In order to reduce any u
physical effects, we base our study on formulas that sat
the detailed balance principle exactly and have a higher
curacy in the short-time limit. Besides extending the Mon
Carlo method to evaluate 11-dimensional integrations
quired for line shape calculations, we would like to answ
some questions in depth. We want to know whether the
shapes are asymmetric and if they are, to find out the or
of the asymmetry. In other words, we want to know wheth
it is necessary to introduce two line shapes instead of o
and why they differ from each other. As expected, in co
parison with our previous studies, this introduces extra d
culties. Fortunately, thanks to the coordinate representa
Downloaded 26 Feb 2002 to 130.160.100.133. Redistribution subject to 
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and the Monte Carlo method as two powerful tools to p
form averages, and also to great advances in computers m
in recent years, we are able to overcome these obstacles
make significant progress.

The details about the coordinate representation and
Monte Carlo method have been presented previously1–3 and
are not repeated here. We only report new features. Since
want to carry out band averages in a more sophisticated w
we have to introduce a positive and a negative resona
dipole operator in the Hilbert space of the absorber molec
denoted bymm

. andmm
, , respectively. The former is define

by

mm
.5 (

Ej .Ei

^ i ummu j &u i &^ j u, ~30!

and the latter by

mm
,5 (

Ej ,Ei

^ i ummu j &u i &^ j u. ~31!

We note that for the vibrational bandsj denotes a higher
vibrational quantum number thani in Eq. ~30! and vice versa
in Eq. ~31!. Then, with Eqs.~8! and ~23!, one can rewrite
x̂1(v) as a summation overz andh,

x̂1~v!5v2
1

N (
zh

H̃zh~v!G~zh!
1 , ~32!

whereG(zh)
1 are defined by

G~zh!
1 5(

m
~^zuArbra

1/4mm
.ra

1/4uh&!* ^zuArbra
1/4mmra

1/4uh&,

~33!

or

G~zh!
1 5(

m
~^zuArbra

1/4mm
.ra

1/4uh&!* ^zuArbra
1/4mm

.ra
1/4uh&,

~34!

for the pure rotational bands and for the vibrational ban
respectively. For simplicity, we will only present formula
applicable for the pure rotational bands and simply ment
differences between them and their vibrational analogs
the expression forx̂1(v) given by Eq.~32!, the summation
terms are products ofH̃zh(v) and G(zh)

1 . The former are
functions of v and their values depend on the interacti
potential between the two molecules. The latter are comm
for all frequencies and their values are independent of
potential. With the coordinate representation, no matter h
complicated the potential is, to calculate values ofH̃zh(v) is
straightforward since the potential is a diagonal operator.
the other hand, to obtain theG(zh)

1 involves a lot of calcula-
tions, because they contain the density matrices that are
ferential operators. Fortunately, for a given temperatu
these calculations need to be done only once since re
obtained are applicable for all potential models. Thus,
can calculate them and store them in an input file.

In the coordinate representation, the basis functionsuz&
are nothing but the direct productud(Va2Vaz& ^ ud(Vb

2Vbz)&, where the notations ofud(Va2Vaz)& and ud(Vb

2Vbz)& are used to represent specified orientations of
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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absorber and the perturber molecules, respectively. Acc
ingly, one can separate the dependence ofG(zh)

1 on the ab-
sorber and on the perturber molecules and express it as
product ofGa(zh)

1 andGb(zh) ,

G~zh!
1 5(

m
~^d~Va2Vaz!ura

1/4mm
.ra

1/4ud~Va2Vah!&!*

3^d~Va2Vaz!ura
1/4mmra

1/4ud~Va2Vah!&

3u^d~Vb2Vbz!uArbud~Vb2Vbh!&u2

[Ga~zh!
1 Gb~zh! . ~35!

For the vibrational bands, the dipole moment operatormm in
Eq. ~35! is replaced bymm

. .
In comparison withGa(zh)

1 , the expressions forGb(zh)

are simpler because they do not contain the dipole oper
For the linear, symmetric top, and asymmetric top molecu
the explicit expressions forGb(zh) have been presented an
the corresponding profiles have been discussed in our p
ous papers,1–3 and we do not repeat them. With respect
Ga(zh)

1 , one has to derive the corresponding expressi
valid for the linear, symmetric top, and asymmetric top m
ecules, respectively. We do not present all of them, rat
only the last and the most complicated one applicable
th
y
t,
on

-
o

o
n

o
es

e

l,
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H2O. It is well known7,8 that the wave functions of H2O,
u j tm&, can be expressed in terms of an expansion
symmetric-top wave functionsu jkm&,

u j tm&5(
k

Ukt
j u jkm&

5(
k

Ukt
j F ~21!m2kS 2 j 11

8p2 D 1/2

D2m,2k
j ~a,b,g!G ,

~36!

whereDm,k
j (a,b,g) (5e2 imadm,k

j (b)e2 ikg) is the rotational
matrix. With Eq.~36!, one is able to expressGa(zh)

1 as

Ga~zh!
1 5(

L
(
KK8

AKK8
L1

DK,K8
L

~a~zh! ,b~zh! ,g~zh!!, ~37!

where a (zh) , b (zh) , and g (zh) are the three Euler angle
used to represent a rotation resulting from two succes
rotations, i.e.,

R~a~zh! ,b~zh! ,g~zh!!5R21~az ,bz ,gz!R~ah ,bh ,hh!,
~38!

and the summation indexL50,1,2,...; both indicesK andK8
run from 2L to L. In the above expression, the coefficien

AKK
L1

are given by

8

AKK8
L1

5
1

64p4N
~21!11L1K(

j 1t1
(
j 2t2

~2 j 111!~2 j 211!Agt1
gt2

e2b@E~ j 1 ,t1!1E~ j 2 ,t2!#/4

3 (
$ j 18t18%1

(
j 28t28

~21! j 181 j 28A~2 j 1811!~2 j 2811!e2b@E~ j 18 ,t18!1E~ j 28 ,t28!#/4W~ j 28 j 2 j 18 j 1,1L !

3S (
k

~21!kUkt1

j 1 Uk2K t2

j 2 C~ j 1 j 2L,kK2kK! D S (
k8

~21!kU
k81K8t

18

j 18 U
k8t

28

j 28 C~ j 18 j 28L,k81K82k8K8!D
3S (

k1

Uk1t1

j 1 U
k1t

18

j 18 C~ j 11 j 18 ,k10k1! D S (
k2

Uk2t2

j 2 U
k2t

28

j 28 C~ j 21 j 28 ,k20k2! D , ~39!
les
tial

.

lly
s.
is

s

where E( j ,t) are the energies of the state labeled by
quantum numbersj andt, gt is its nuclear spin degenerac
factor, C( j 1 j 2L,kK2kK) is a Clebsch–Gordan coefficien
W( j 28 j 2 j 18 j 1,1L) is a Racah coefficient, and the summati
over j 18 andt18 indicated by a symbol$ j 18t18%1 is limited to a
range withE( j 18t18).E( j 1t1). In deriving the above expres
sion, the body-fixed frame is chosen such that the dip
moment of H2O lies along itsz axis ~i.e., theII r representa-
tion!. In addition, because the line shape functions are n
malized with respect to the magnitude of the dipole mome
as shown by Eqs.~18!, ~20!, and~21!, the latter is assumed t
be unity. We note that for the vibrational bands, the expr

sion for AKK8
L1

is similar to that given above, except that th
states labeled byj 18t18 and j 28t28 and the states labeled byj 1t1

and j 2t2 belong to a higher and a lower vibrational leve
respectively. In addition, another limitation ofE( j 28t28)
.E( j 2t2) is also enforced in the summations.
e

le

r-
t,

-

With Eqs. ~37! and ~38!, one can conclude thatGa(zh)
1

are three-dimensional distributions over three Euler ang
used to represent a rotation of the molecule from the ini
orientation to the final one, labeled byz andh, respectively.
With respect to x̂2(v), one can introduceGa(zh)

2 and
write down similar equations to Eqs.~32! and ~35!. Mean-

while, Ga(zh)
2 can be given in terms ofAKK8

L2

and
DK,K8

L (a (zh) ,b (zh) ,g (zh)) in the same way as shown by Eq

~37!. The expression forAKK8
L2

is almost identical toAKK8
L1

shown by Eq.~39!, except that the summation overj 18 andt18
is limited to a range withE( j 18t18),E( j 1t1).

Although the calculations ofAKK8
L1

andAKK8
L2

are straight-
forward, there are many summation loops involved. Usua
one introduces a cut-offj max to exclude less populated state
It turns out that asj max increases, not only more CPU time

required to calculate eachAKK8
L1

andAKK8
L2

because the range
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. The two-dimensional distribu-
tion of Ga(zh)

1 (a,b,g) of H2O over
the Euler anglesa and g obtained at
T5296 K for j max526. The values of
the Euler angleb is fixed and the four
plots presented here correspond tob
55°, 22°, 38°, and 50°, respectively.
at
la
F

c

a
-
o

a
5
tt
f

en

y
l

e
es

-

r

re-

e.
of

-
nal
the

s

u-
in

.

ted
of loops become larger, but also the number to be evalu
increases quickly. Fortunately, one does not need to calcu
all of them since some are identical and others are zero.

H2O, due to the symmetry ofUkt8
j all the coefficientsAKK8

L1

and AKK8
L2

are zero unless their indicesK and K8 have the
same evenness or oddness. In addition, for the nonzero

efficients there are symmetriesAKK8
L1

5A2K2K8
L1

, AKK8
L2

5A2K2K8
L2

, andAKK8
L1

5AK8K
L2

. As a result, if one introduces
cut-off j max523 ~which is the highest angular quantum num
ber of the initial states listed in the pure rotational band

the HITRAN 92 database9!, there are 18 424 values ofAKK8
L1

and 18 424 ofAKK8
L2

needed to be evaluated. If one uses
even higher cut-offj max526, these numbers become 26 23
By utilizing a dozen CPUs, we are able to manage the la
in less than two days. We note that to obtain these coe
cients is the most costly calculational part in the pres
study.

After all AKK8
L1

and AKK8
L2

are available, we can easil
calculateGa(zh)

1 and Ga(zh)
2 , which are three-dimensiona

distributions over the Euler anglesa (zh) , b (zh) , andg (zh) .
In cases where no confusion results, the subscripts of th
Euler angles are omitted. However, it is better to expr
them as distributions over their two sensitive variablesb and
u @[(a1g)/2# and one insensitive onev @[(a2g)/2#.
The explicit expression forGa(zh)

1 used in the numerical cal
culations, is given by

Ga~zh!
1 ~b,u,v !5(

L
(
KK8

AKK8
L1

eKK8dKK8
L

~b!

3$cos@~K1K8!u#cos@~K2K8!v#

2sin@~K1K8!u#sin@~K2K8!v#%, ~40!
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where the ranges of the indicesL, K, andK8 are from 0 to
2 j max, from 0 to L, and from2L to L, respectively;eKK8
51 for K50, and eKK852 otherwise. The expression fo

Ga(zh)
2 is similar to Eq.~40!, except a replacement ofAKK8

L1

by AKK8
L2

. However, due to the symmetryAKK8
L1

5AK8K
L2

men-
tioned above,Ga(zh)

1 (b,u,v) does not differ fromGa(zh)
2

(b,u,v) significantly. In fact, it is easy to show that

Ga~zh!
1 ~b,u,v !5Ga~zh!

2 ~b,u,2v !. ~41!

This means that with respect to the sensitive variablesb and
u, they have same distribution patterns. Meanwhile, with
spect to the insensitivev, one is the others’ mirror image.

BecauseGa(zh)
1 (b,u,v) andGa(zh)

2 (b,u,v) are three di-
mensional, it is impossible to plot their profile in one figur
We calculate several two-dimensional distributions
Ga(zh)

1 (a,b0 ,g) over the Euler anglesa and g at 296 K
obtained with the fixedb055°, 22°, 38°, and 50°, respec
tively, and present their corresponding three-dimensio
plots in Fig. 1. From the figure, one can easily see that
magnitudes ofGa(zh)

1 decreases very fast asb0 increases.
More specifically, forb0522°, 38°, and 50° the magnitude
decrease by about one order each. In addition, theseGa(zh)

1

exhibit symmetry with respect to the axes (a1g)/2 and (a
2g)/2. In order to show the profile ofGa(zh)

1 at 296 K over
the two sensitive variablesb andu, we calculate its average
over v and present the resulting two-dimensional distrib
tions in Fig. 2. One has to imagine that the profile shown
Fig. 2 extends along another dimension, i.e., thev axis that is
perpendicular to theb2u plane and is missing in the figure
Furthermore, the range of extension along thev axis varies
from the minimum 0 atu50 and 2p to the maximum 2p at
u5p. As shown in Fig. 2, there are five sharp peaks loca
along theu axis atu50, p/2, p, 3p/2, and 2p, respectively,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. The two-dimensional distribu-
tion of Ga(zh)

1 (b,u,v) of H2O over the
two sensitive variablesb and u ob-
tained atT5296 K for j max526. This
distribution results from the averaging
Ga(zh)

1 (b,u,v) over the one insensi-
tive variablev. In contrast with Fig. 1,
a logarithmic coordinate is used fo
the Ga(zh)

1 (b,u,v) axis.
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and they are symmetric with respect to the planeu5p. The
magnitudes of these peaks decrease very fast asb increases.
We note that in contrast with Fig. 1, a logarithmic coordina
is used to plot the magnitudes. From Figs. 1 and 2, one
conclude that the peak atu5p is dominant. We do not
present the profiles ofGa(zh)

1 for other temperatures, but sim
ply mention that they have similar patterns, but the pe
become lower and wider as the temperature decreases
the other hand, it is unnecessary to present similar figures
Ga(zh)

2 because one can easily obtain them from Figs. 1
2. In fact, Figs. 1 and 2 are also applicable forGa(zh)

2 except
that one has to switch the labelsa andg in Fig. 1. Finally,
we note that becauseGa(zh)

1 (b,u,v) andGa(zh)
2 (b,u,v) are

independent of the potential, it is wise to calculate them fi
and store them in files. Then, when one carries out repe
calculations forx̂1(v) and x̂2(v) to optimize the potentia
models, one does not need to evaluate the values
Ga(zh)

1 (b,u,v) and Ga(zh)
2 (b,u,v) again. In addition, using

the interpolation method one can easily obtain their val
for a random selection ofb, u, andv from these input files.
Otherwise, one has to independently evaluate them abou7

times in the Monte Carlo calculations.

D. Contributions from frequency detuning

So far, our discussion has been focused on how to ap
the coordinate representation for calculatingx̂1(v) and
x̂2(v). In order to calculatex̃1(v) and x̃2(v), one has to
go further by adding contributions from the frequency detu
ing. We briefly explain a method used to obtain the seco
term of Eq.~22! associated withx̃1(v). In comparison with
evaluating the first termx̂1(v), the only additional obstacle
is that the integrand contains a derivativex̃k1 ;n8 (v). In prac-

tice, except for special cases in which analytic expressi
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for this derivative are available, to evaluate values
x̃k1 ;n8 (v) is much more difficult thanx̃k1 ;n(v) because a

numerical subroutine is required to obtain the former fro
the latter. Given the fact that there are about 107 random
selections in the Monte Carlo calculations, this means t
this subroutine must be called 107 times. Fortunately, excep
for this part, the other parts of the second term do not dep
on the frequency. Therefore, it is better to reverse the or
of the derivative and the summation~i.e., integral! opera-
tions. In other words, instead of (1/N)(k1

(n@v̄2 1
2(vk1

1vn)#x̃k1 ;n8 (v), we can calculate a new term given b

(1/N)(k1
(n@v̄2 1

2(vk1
1vn)#x̃k1;n(v). The results ob-

tained are a function of the frequency represented by a se
values of the integrations and a set of corresponding frequ
cies. Then, with the numerical subroutine, one is able
obtain the derivatives that are just the second term we w
to calculate. With this technique, the subroutine is cal
only once and the cost to calculate the second term of
~22! is comparable to the first.

The same method used forx̂1(v) explained in Sec. II C
is also applicable for evaluating this new term. We do n
repeat a detailed discussion, but simply mention things

are different. In this case, a new set of coefficientsBKK8
L1

can

be introduced whose expression is almost the same asAKK8
L1

given by Eq. ~39!, except a factor of$v̄2 1
2@E( j 18t18)

2E( j 1t1)1E( j 28t28)2E( j 2t2)#% is inserted into the inside
of summation loops over the indicesj 1 , t1 , j 2 , t2 , j 18 , t18 ,
j 28 , andt28 . Similarly, one can introduce a set of coefficien

BKK8
L2

associated with the second term of Eq.~24! for x̃2(v)

whose expression is the same asBKK8
L1

except the summation
over j 18 and t18 is limited to a range with E( j 18t18)

,E( j 1t1). We note that in comparison withAKK8
L1

andAKK8
L2
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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BKK8
L1

andBKK8
L2

have similar symmetriesBKK8
L1

5B2K2K8
L1

and

BKK8
L2

5B2K2K8
L2

, exceptBKK8
L1

52BK8K
L2

. Then, one can intro-
duce two three-dimensional distributions associated w

BKK8
L1

and BKK8
L2

respectively, and store their values in tw
input files the same way asGa(zh)

1 (b,u,v) and
Ga(zh)

2 (b,u,v). Finally, by comparing these two distribu
tions, their patterns are closely related to each other
shown by Eq.~41!, except one has to add a minus sign on
right side since their values become opposite.

As expected, to evaluateBKK8
L1

and BKK8
L2

requires con-
siderable CPU time, and the costs are approximately

same as forAKK8
L1

and AKK8
L2

. In practice, for specifiedL, K
andK8, one does not need to calculate the four coefficie
separately, rather one can evaluate all of them simu
neously.

E. A Monte Carlo calculation of 11-dimensional
integrations

As an example, we explain how to calculatex̂1(v) from
Eq. ~23! in detail. In the coordinate representation, the su
mation of H̃zh(v)G(zh)

1 over z and h becomes a 11-
dimensional integration ofH̃zh(v)G(zh)

1 over the Euler
anglesbaz , gaz , abz , bbz , gbz , aah , bah , gah , abh ,
bbh , and gbh in which the first five ~including aaz50!
specify the initial orientations of the system and the last
specify the final ones. We note that due to the rotatio
symmetry of the whole system, one can always assumeaaz

50. For such high dimensionality, the Monte Carlo meth
is the only way to evaluate the integrals.

It is well known that in the Monte Carlo computation,
is important to distinguish the sensitive and insensitive v
ables of the integrand, and to incorporate this into the in
gration variables since this enables one to tailor the imp
tant sampling and to reduce the variance dramatically. In
present case, the integrand is a product ofH̃zh(v) and
G(zh)

1 . With respect to their variables, the former is a smo
function, as shown by Eq.~9!, but the latter’s values vary
wildly and could differ from each other by many orders
magnitude. This means that the sensitivity of integrand
mainly determined byG(zh)

1 , or more specifically, byGa(zh)
1

andGb(zh) . We note thatGa(zh)
1 andGb(zh) depend on rela-

tive orientations between the initial and final positions of t
absorber and perturber molecules, respectively. Therefor
is proper to represent the final orientations of the sys
labeled byh in terms of the body-fixed frames instead of t
space-fixed frame. The body-fixed frames introduced h
are those attached to the two molecules at their initial ori
tational positions. For the asymmetric-top molecule, o
choosesaz , bz , gz , a (zh) , b (zh) , andg (zh) instead ofaz ,
bz , gz , ah , bh , andgh as variables. However, similar t
the behavior ofGb(zh) explained in our previous study,3 the
sensitivity of Ga(zh)

1 on its two variablesa (zh) and g (zh) is
interwoven such that neither is a sensitive or insensitive v
able, but their combinationsu(zh) , andv (zh) are. Therefore,
in order to well characterize the sensitivity, a replacemen
a (zh) , b (zh) , andg (zh) by b (zh) , u(zh) , andv (zh) as vari-
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ables inGa(zh)
1 is appropriate. The same conclusion is al

true for Gb(zh) . This is a further step necessary to evalua
11-dimensional integrations because, in comparison wit
or 9-dimensional ones, not only the dimensionality becom
higher, but also the distributions of the integrand beco
more nonuniform. However, in order to incorporate the
new choices for the integration variables, one has to
extra attention to their ranges. More specifically, sinceu(zh)

varies from 0 to 2p and v (zh) varies from2u(zh) to u(zh)

when 0<u<p, and fromu(zh)22p to 2p2u(zh) whenp
<u<2p, the integration volume becomes a lozenge-sha
area. Because the algorithm VEGAS10 is designed for carry-
ing out integrations over rectangular volumes, one can
incorporate the integration variables directly. Therefore,
have modified VEGAS such that the new version enab
one to evaluate integrations over a volume containing
lozenge-shape area. Then, with respect to the sensitivity
dependence of the integrand on all integration variable
well characterized. This enables one to fully exploit t
power of the Monte Carlo method. As a result, numeri
tests show that with a few more random selections than
fore, one is able to evaluate the 11-dimensional integrati
successfully.

The above discussion is also applicable for evaluat
other 11-dimensional integrations, i.e., those forx̂2(v), and
for the frequency detuning correction terms ofx̃1(v) and
x̃2(v) because their integrands have similar features. N
merical tests show that with the modified version of VEGA
we are also able to evaluate these as well.

F. Potential models

Based on the progress mentioned so far, we are abl
calculate converged line shapes for H2O– H2O without or
with the frequency detuning correction, i.e.,x̂1(v) and
x̂2(v), or x̃1(v) and x̃2(v), from potential models pro-
vided unless they are too complicated~e.g., those consisting
of several decades of terms and parameters!. There are sev-
eral potential models available in literatures, such as
HF,11 CI,12 Watts,13 RWK1,14 and RWK2 model.14 We have
tested some of them to calculate the line shapes and
corresponding absorption coefficients. Unfortunately, it tu
out that the results obtained from these models predict
much absorptions in comparison with experimental data
has been shown in our previous study2,3 that the far-wing
shape is very sensitive to the angular gradients of the po
tial. The reason is that contributions to the line shape co
mainly from energy contour areas at which large angu
gradients of the potential are exhibited while the poten
values themselves are relatively small or even negative.
expect that such features would not fully manifest their
fects on other physical measurements on which these mo
were developed. Therefore, the failure of these models is
surprising.

As an alternative, we assume that the potential
H2O– H2O consists of a Coulomb interaction represented
a site–site model, a short range repulsive interaction re
sented by another site–site model, and an isotropic attrac
dispersion interaction proportional to21/r 6. For each H2O,
there are two positive point charges1q located at the H at-
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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oms and one negative point charge22q at a position along
its symmetry axis a distanced from the O atom.~A positive
value ofd means the charge22q is located on the same sid
as the center of mass.! In addition, we assume that there a
three repulsive force centers: two located at the two H ato
and one at the O atom, and the repulsive interactions ha
form Ai j e

2r i j /r i j , wherer i j are distances between force ce
ters, andAi j andr i j are adjustable parameters. According
the potentialV(r ,Va ,Vb) considered here is given by

V~r ,Va ,Vb!5(
i Pa

(
j Pb

qiqj

r i j
1(

i Pa
(
j Pb

Ai j e
2r i j /r i j 2

B

r 6 ,

~42!

and it contains seven adjustable parameters:AOO, rOO,
AOH, rOH, AHH , rHH , andB. The values ofq50.60~a.u.!
andd50.4991~a.u.! are determined such that they match t
well-known dipole moment value 1.8546 D and yield qua
rupole momentsucc522.319 D Å, uaa52.635 D Å, and
ubb520.316 D Å, which are reasonable in comparison w
experimental valuesucc522.50 D Å, uaa52.63 D Å, and
ubb520.13 D Å.15 We adopt the potential form given b
~42! and search for a set of potential parameters that ena
us to obtain satisfactory results for several properties o
dilute H2O gas; e.g., the absorption coefficient, the seco
virial coefficient, and the differential cross section.

FIG. 3. The self-broadened far-wing line shape of H2O ~in units of
cm21 atm21! as a function of frequencyv ~in units of cm21! for T
5296 K. The dashed curve representsx̃1(v) calculated from the positive
resonance line average and the dotted curve representsx̃2(v) calculated
from the negative resonance line average. The solid curve isx̂(v) which is
the mean ofx̃1(v) and x̃2(v).
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G. General features and numerical results for the line
shapes

We have presented the line shape formulas applicable
both the pure rotational band and vibrational bands. But
the present study, the numerical calculations are carried
for the former because, not only is this the strongest ban
H2O, but also most of the continuum absorption measu
ments are performed in its high-frequency wing.

It is worthwhile to report general features of line shap
found from numerous test calculations before we pres
more specific results. First of all, we find that differenc
betweenx̂1(v) andx̂2(v) calculated from the same poten
tial are always less than numerical errors. The formulas u
to get x̂1(v) and x̂2(v) are the same, but the input file
representing the two distributionsGa(zh)

1 (b,u,v) and
Ga(zh)

2 (b,u,v), respectively, are different. However, the
two distributions differ from each other only slightly. In fac
as explained above, they exhibit the same profiles over
sensitive variablesb andu, and are mirror images over th
insensitivev. In cases where the potential contains cyc
coordinates, it is easy to show analytically that these t
distributions must yield the same line shapes. For more g
eral cases, given the fact thatGa(zh)

1 (b,u,v) and
Ga(zh)

2 (b,u,v) differ from each other as discussed above,
suspect that effects resulting from these differences co
cancel out in the averaging processes when the integrat
are evaluated by about 107 random selections. In the prese
study, we do not seek a general and rigorous proof of
finding, rather we assume it. Then, we can draw the imp

FIG. 4. The calculated self-broadened absorption coefficient~in units of
cm2 molecule21 atm21! at T5296 K in the 300–1100 cm21 spectral region
is represented byn. For a comparison, the experimental values of Bur
et al. are denoted by1 and those from Cormieret al. are denoted byh,
along with their error bars.
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tant conclusion that by not considering the frequency det
ing correction, the line shape obtained from the formali
satisfying the detailed balance is symmetric. In other wor
if one does not consider the frequency detuning correct
one only needs to introduce one line shape function.

Second, we find that the calculated contributions fro
the frequency detuning associated withx̃1(v) are opposite
to those associated withx̃2(v), and the differences betwee
their magnitudes are always less than numerical errors.
indicates that these correction contributions have the s
magnitudes, but with different signs; this is not surprisi
since we have already noted our finding forx̂1(v) and
x̂2(v). In general, the values of the correction contributi
for x̃1(v) are positive and those forx̃2(v) are negative for
v.0 andvice versafor v,0. In addition, we find that the
correction contributions are significant, especially at h
frequencies, but they tend to become negligible near the
center.

Now, we are ready to present some results. We find
by adopting AOO/k51.053107 K, rOO50.245 Å, AOH/k
52.03103 K, rOH50.36 Å, AHH /k54.03102 K, rHH

50.46 Å, and B/k59.03103 K, one is able to obtain
x̃1(v) andx̃2(v) such that the calculated absorption at 2
K can fit the experimental results in the spectral region 30
1100 cm21 very well. We note that because this windo
region is located on the high-frequency side of the pure
tational band, the calculated absorption arises mainly fr
the contributions ofx̃1(v). The two line shapesx̃1(v) and
x̃2(v) at 296 K, together with their meanx̂(v), are plotted
in Fig. 3. As shown in the figure, the magnitudes ofx̃1(v)
are larger thanx̃2(v) and the relative gaps between the

FIG. 5. The calculated second viral coefficients~in units of cm3 mol21! as a
function of temperature is represented by a solid line. The experimental
are denoted byh.
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increase significantly asv increases. The corresponding se
broadened absorption coefficients in the spectral region 3
1100 cm21 based onHITRAN 92 data are plotted in Fig. 4
together with the experimental results of Burchet al.16 and
some recent measurements of Cormieret al.17 Using this po-
tential, we calculated the second virial coefficients at seve
temperatures18 and compare them with experimental data14

in Fig. 5. In addition, the calculated differential cross secti
together with experimental data19 are plotted in Fig. 6. We
note that all these physical quantities are associated with
lute water vapor, and as shown by these figures, the ag
ments between the theoretical predictions and the labora
measurements are good.

Based on the same potential model, we calculated
two line shapesx̃1(v) and x̃2(v) for several temperature
ranging from 220 to 330 K that are of interest in the atm
spheric applications and the corresponding absorption c
ficients. Some ofx̃1(v) obtained for 220, 240, 260, 280
300, and 320 K with frequencies ranging from21600 to
1600 cm21 are presented in Fig. 7, and the correspond
x̃2(v) are their reflections about thev50 axis. As shown in
the figure, thesex̃1(v) andx̃2(v) are asymmetric and thei
magnitudes increase as the temperature decreases. We
that the line shapesx̃1(v) andx̃2(v) presented here do no
include a factor 1/v2, as shown in Eq.~13!. If one wants to
compare them to other line shapes~e.g., a Lorentzian!, one
has to multiply them by the factor 1/v2. Also, the magnitude
of x̃1(v) or x̃2(v) asv→0 should approach the Lorentz
ian half-width, although the present theory is not valid in th
limit. It is clear, however, that the theoretical shapes

taFIG. 6. The calculated differential cross section~in arbitrary units! as a
function of the laboratory scattering angleu is represented by a solid line
The experimental values of Duquette are denoted byh.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 7. The self-broadened far-wing
line shapesx̃1(v) of H2O ~in units of
cm21 atm21! as a function of fre-
quencyv ~in units of cm21! obtained
for T5220, 240, 260, 280, 300, and
320 K; these are represented by s
curves in order from top to bottom
The frequencyv varies from21600
to 1600 cm21. The corresponding
x̃2(v) are reflections ofx̃1(v) about
the v50 axis.
40
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super-Lorentzian for the displacements up to around
cm21 and then become sub-Lorentzian for larger displa
ments. In fact, the line shape must approach zero at lea
fast as an exponential. This can be shown from the analy
ity of the correlation function; the successive derivatives
C(t) in the t50 limit correspond to moments of the lin
shape in frequency space. Because the derivatives ar
finite, this implies that all the moments of the line shape
also finite and, therefore, the line shape must approach
faster than any inverse power ofv. In Fig. 8, we present al
Downloaded 26 Feb 2002 to 130.160.100.133. Redistribution subject to 
0
-
as
c-
f

all
e
ro

the calculated absorption coefficients in the window reg
600–1250 cm21. We note that for a specified frequencyv,
we exclude completely any contribution from lines that a
within @v225 cm21,v125 cm21# in the calculations. As
shown by Fig. 8, the strong, negative temperature dep
dence of self-continuum is clearly demonstrated.

III. DISCUSSIONS AND CONCLUSIONS

In comparison with our previous studies on the far-wi
line shape, there are several important advances that
n

,
r

-

FIG. 8. The self-broadened absorptio
coefficient ~in units of cm2

molecule21 atm21! in the window re-
gion 600–1250 cm21 calculated forT
5220, 230, 240, 250, 260, 270, 280
290, 300, 310, 320, and 330 K in orde
from top to bottom. A cut-off 25 cm21

is used to exclude completely any con
tribution of lines that are closer than
this limit.
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been made in the present study. First of all, by clearly d
tinguishing the sensitive and insensitive variables and
modifying the Monte Carlo subroutine used previously
handle integrations whose volume is not rectangular, the
fectiveness of the important sampling is enhanced sign
cantly. As a result, by accounting for random selections
the order of 107 ~which is comparable to or slightly mor
than that required for lower-dimensionality cases!, one is
able to evaluate 11-dimensional integrations.

Second, we have carried out numerical calculatio
based on the formalism that satisfies the detailed bala
principle exactly and has a higher accuracy in the short-t
limit. As expected, this increases the difficulty because
evaluation of the integrands requires more calculations.
shown by Eqs.~3! and ~4!, within this formalism the dipole
moment operator appears in formulas in such a way that
always sandwiched by the density matrix. However, th
two operators have different characters: one depends on
coordinates only while the other contains differential ope
tors. No matter what kind of representation is chosen,
sandwiched operators require more loops to evaluate t
values. As in our previous studies, we use the coordin
representation because it enables us to include more p
lated states; we also introduce the distribution functions
store them in files because it enables us to obtain value
the integrand with less CPU time. But, to calculate the
distributions with a high cut-offj max requires long CPU
times. We note that for temperatures of interest in atm
spheric applications,j max523 is enough, but for higher tem
peratures, a higherj max would be necessary. With these inp
files, to obtain values of the integrand becomes relativ
easy. Combing the technique mentioned above to reduce
number of random selection to the order of 107, one is able
to complete the evaluation of 11-dimensional integratio
and to obtain a line shape in one day with one workstati

Finally, by carrying out band averages in a more soph
ticated way, we can calculate the two line shape functions
addition, the effects resulting from the frequency detun
have been taken into account in the averaging processes
note that except for the simplest system, e.g. CO2– Ar,6 the
latter has not been done previously. In fact, most calculati
are similar to those without including the frequency detun
correction, except the integrand contains a derivative. As
plained above, we have developed a technique that ena
one to overcome this obstacle and calculate the freque
detuning corrections.

Based on numerous test calculations of line shapes
ing the course of study, we can draw several important c
clusions. It is necessary to consider the frequency detun
correction because the effect on the line shape is signific
especially in the high-frequency region. However, this eff
shows up only when one distinguishes the positive and
negative resonance lines and carries out the band ave
over them separately. In other words, we have demonstr
that the line shapes obtained from the two band average
asymmetric and we have found that this asymmetry res
from the frequency detuning effect, or, more specifica
from the distribution of lines within the band of interest.
addition, we find that for the pure rotational band the ma
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nitudes ofx̃1(v) are significantly larger thanx̃2(v) for v
.0 andvice versafor v,0, and these gaps become larg
as v increases. We note that the conclusion concerning
asymmetry claimed here is applicable for the band aver
line shapes and has nothing to do with individual lines.

Finally, we would like to make a few comments on th
vibrational bands. We expect the main conclusions about
line shapes for the pure rotational band would remain tr
but some different features could show up because the
tributions tox̃1(v) andx̃2(v) from the frequency detuning
terms depend strongly on the band structure. We expect
the more unevenly and the more widely the lines are dist
uted within the band of interest, the contributions from t
frequency detuning corrections will increase and the m
x̃1(v) differs from x̃2(v). It is well known that the line
distributions of the vibrational bands are quite different fro
that for the pure rotational one. The former’s lines are, m
or less, evenly located on both sides of the band centers
the latter’s are always on the high-frequency side because
band center is zero. We note that according to the definit
the average positive resonance frequencyv̄ introduced here
is not the band center. These two are very close for the
brational bands, but are quite different for the pure rotatio
band. We expect that for the vibrational band the freque
detuning corrections could become smaller. This means
x̃1(v) and x̃2(v) differ from each other by smalle
amounts. Meanwhile, we could not draw any conclus
about which magnitude is larger because this is related to
special structure of the pure rotational band. It has b
known for years that the line shapes for CO2 derived from
experimental data are asymmetric and they are not the s
for different bands.20,21 So far, there has been no theoretic
explanation as to why the different bands have differ
shapes without assuming that the interaction depends s
tively on the vibrational quantum numbers, which seems
likely to be true. We think that both from the theoretical a
practical points of view, to investigate the lines shapes
different bands is an interesting subject to pursue.
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